激光熔覆技术存在的难题
激光熔覆层质量的优劣评价,主要从两个方面来考虑。
一、是宏观上,考察高速激光熔覆机熔覆道形状、表面不平度、裂纹、气孔及稀释率等;
二、是微观上,考察是否形成良好的组织,能否提供所要求的性能。此外,还应测定表面熔覆层化学元素的种类和分布,注意分析过渡层的情况是否为冶金结合,必要时要进行质量寿命检测。
旁轴送粉激光熔覆技术也叫侧向送粉激光熔覆技术,其一般采用半导体直输出激光器或半导体光纤输出激光器和重力送粉器,高速激光熔覆机熔覆头采用矩形光斑+旁轴宽带送粉方案。熔覆头工作时,合金粉末经送粉嘴输送至工件表面进行预置,随着熔覆头与工件做相对运动,矩形的激光束扫描预置的合金粉末并将其熔化形成熔池,冷却后形成熔覆层。
工业激光制造领域,激光熔覆是一种表面改性技术,高速激光熔覆机又叫激光熔敷或激光包覆。激光熔覆通过在基材表面添加熔覆材料,并利用高能密度的激光束使之与基材表面薄层一起熔凝的方法,在基层表面形成与其为冶金结合的添料熔覆层。
高速激光熔覆机激光熔覆技术具有稀释率低、热输入小、材料广泛等众多优点,目前已在产业化应用的过程中演化出多种不同类型,并广泛应用于增材制造、再制造、表面工程的各个领域。 按照激光熔覆的材料类型和材料与激光束的耦合形式,可将常见的激光熔覆技术分为同轴送粉激光熔覆技术、旁轴送粉激光熔覆技术(也叫侧向送粉激光熔覆技术)。
高速激光熔覆机熔覆注意事项
(1)熔覆层厚度:熔覆层厚度主要取决于熔覆功率、送粉量和工件运动线速度。高速熔覆可实现0.2-1.5mm的熔覆层厚度,特殊情况下,可进行多层熔覆实现较厚的熔覆厚度。但0.5mm以下的熔覆层厚度更能发挥高速熔覆的优势。
(2)结合强度:高速激光熔覆与热喷涂的最主要区别在于:高速熔覆在熔化粉末的同时,也将小部分能量用于熔化工件基体,熔融粉末在熔融基体界面处产生原子相互扩散而形成冶金结合。高速激光熔覆层与基体结合强度可高达360MPa以上。
(3)孔隙率:空隙的出现主要原因有粉末未熔化充分、粉末过度氧化等,选择适当的熔覆功率、送粉量和工件运动速度,高速熔覆的孔隙率可接近零。
(4)稀释率:指熔敷金属被稀释的程度,用基材在熔覆层中所占的百分比来表示。稀释率对熔覆层性能有较大的影响。稀释率的大小主要受金属粉末流量、熔覆功率和熔覆速率等因素影响。中科中美大量的用户数据表明,高速熔覆的稀释率极低,可降到3%以下。
(5)表面粗糙度:高速熔覆层的表面平整度受搭接率、送粉量大小、载气流压力以及机床运动精度等多方面因素等影响。参数匹配恰当,高速熔覆层的粗糙度可实现热喷涂的效果。
(6)硬度耐磨性:高速熔覆层的硬度耐磨性主要取决于粉末特性。
实际高速激光熔覆工作中,需要根据粉末、基材特性及加工需求,设置合适的加工参数,以实现各项技术检测指标要求。
激光熔覆技术是指以不同的添料方式在被熔覆基体表面上放置被选择的涂层材料经激光辐照使之和基体表面一薄层同时熔化,并快速凝固后形成稀释度极低,与基体成冶金结合的表面涂层,高速激光熔覆机显著改善基层表面的耐磨、耐蚀、耐热、抗氧化及电气特性的工艺方法,从而达到表面改性或修复的目的,既满足了对材料表面特定性能的要求,又节约了大量的贵重元素。